

FIG. 5. Number of electrons in sample 7B as a function of pressure. The points are the values of n deduced from the experimental data. The lines are calculated from the Kane's $\vec{k} \cdot \vec{p}$ model with $P_K = 8.4 \times 10^{-8}$ eV/cm, $\alpha = dE_g/dP = 7.0 \times 10^{-6}$ eV/bar.

kbar), R is constant initially and then shows strong quantum effects but remains negative. The resistivity rises very rapidly with transverse magnetic field from 0.03 Ω cm to more than 80 Ω cm at 20 kG. At high fields the Hall angle was less

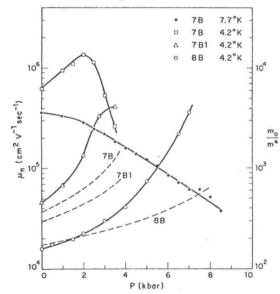


FIG. 6. Electron mobility as a function of pressure for the three samples. The variation of the reciprocal effective mass due to the change in $E_{\it f}$ is shown by the dashed lines for comparison. The mobility is seen to increase faster than $1/m^*$ at low pressure, and for sample 7B at 4,2°K to turn downward above 2 kbar.

TABLE I. Values for the carrier concentrations and mobilities at atmospheric pressure.

		77	M. 44	P = 0	0:	4.2°K	Ж	P = 0	
Sample	×	(cm ⁻³)	$\mu_{\rho} (\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{sec}^{-1})$	(cm ⁻³)	$(\operatorname{cm}^2 \operatorname{V}^{-1} \operatorname{sec}^{-1})$	ρ (cm ⁻³)	$(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{sec}^{-1})$	(cm^{-3})	$(cm^2 V^{-1} sec^{-1})$
7B	7B 0.149±0.005	1,5×10 ¹⁶ ($P > 5 \text{ kbar}$)	450 $(P > 5 kbar)$	5.3×10^{15}	3.7×10^{5}	:	:	3.4×10^{14}	6.3×10 ⁵
7B1.	0.149 ± 0.005	6.3×10^{17}	174	3.0×10^{15}	3.2×10^4	1.5×10^{17}	92	8.8×10^{14}	4.6×10^4
8B	8B 0.138±0.005	8.3×10^{17}	168	4.8×10^{15}	2.5×10^4	7.6×10^{17}	78	3.2×10^{15}	1. 6×10^4